
CPU08 1

ENG SC757 - Advanced Microprocessor Design

Babak Kia
Adjunct Professor
Boston University
College of Engineering
Email: bkia -at- bu.edu

CPU08 The CPU08 Central Processing Unit
M68HC08 and HCS08 microcontrollers

Introduction
Central Processing Unit is
one of the components that
makes up a computer.

• CPU
• Memory Subsystem
• Bus structure

CPU is made up of Control
and Execution units, and
handles

• Arithmetic & logical
operations

• Code execution & Branching
• Data transfer to & from

memory
• Interrupt management

Architecture of a Microcontroller

CPU08 2

Topics of Discussion

Features of CPU08
Architecture Overview
Addressing Modes
A note on assemblers
CPU08 Instruction Summary

Features of CPU08
CPU08 is an 8-bit architecture
8-MHz CPU standard bus frequency
64-Kbyte memory space
Fully object-code compatible with the M68HC05
Instructions designed around stack manipulation
16 addressing modes
Instructions capable of moving data from
memory-to-memory without using the
accumulator
Extensible addressing range beyond the 64K
boundary

Architecture Overview
The CPU08 is an 8-bit
architecture utilizing the
following registers:

• A - Accumulator
• CCR - Condition Code Register
• H - High byte of Index Register
• X - Low byte of Index Register
• PC - Program Counter
• PCH - High byte of PC
• PCL - Low byte of PC
• SP - Stack Pointer

CPU08 3

CPU08 Registers

Accumulator (8 bit)
– A general purpose 8-bit register used by the

CPU to hold operands, or results of arithmetic
or logical operations

Index Register (16 bit)
– Can be accessed either as a 16 bit (H:X)

register, or independently as two 8 bit H, or X
registers

– Used by the CPU to index into, or address a
64KB memory range

CPU08 Registers
Stack Pointer (16 bit)
– The Stack Pointer always points to the next

available location of the stack
– Address decrements as data is moved (pushed

to) the stack, and increments as data is moved
out (pulled) from the stack

Program Counter (16 bit)
– Holds the address of the next instruction to be

fetched
– Automatically incremented, unless a jump or a

branch takes place
– Is loaded with the contents of the Reset Vector at

time of reset

Condition Code Register
The Condition Code Register is an 8-bit register
which is comprised of the Interrupt Mask, and 5
flags which contain the results of the last
executed command
V – Overflow Flag
– Set when two’s complement overflow occurs
– Set by ASL, ASR, LSL, LSR, ROL, ROR
– Used by BGT, BGE, BLE, BLT

CPU08 4

Condition Code Register
H – Half-Carry Flag
– Set when a carry occurs between bits 3 and 4 of the

accumulator
– The DAA uses the value of H to make appropriate

adjustments (BCD)
I – Interrupt Mask
– When set, all interrupts are disabled
– When an interrupt occurs, Interrupt Mask is

automatically set
– Further interrupts are latched until an RTI is issued

Condition Code Register
N – Negative Flag
– Set whenever an arithmetic or logical operation

produces a negative result
Z – Zero Flag
– Set whenever an arithmetic or logical operation

produces a zero result
C – Carry or Borrow Flag
– Set when an arithmetic operation produces a carry

flag, or a subtraction operation requires a borrow
– Some other operations such as bit test can also

set or clear this flag

Control Unit
The control unit is comprised
of the Sequencer, the Control
Store, and control logic
It is primarily reponsible for
“preparing” the instruction
for execution (i.e. fetching,
decoding, address resolution)
Sequencer provides the next
state of the machine to the
control store based on the
contents of the Instruction
Register (IR)
Control store provides the
next state condition to the
Execution Unit (EU)

CPU08 5

Instruction Execution

Addressing modes
Inherent
Immediate
Direct
Extended
Indexed
– No offset, post increment
– 8-bit offset, post increment
– 16-bit offset, post increment

Stack Pointer
– 8-bit offset
– 16-bit offset

Relative
Memory to Memory (4 modes)

Inherent Addressing

Have no operand associated with them
(addresses are inherent)
They require no memory address
– INCA – Increment Accumulator
– CLRA – Clear Accumulator
– PSHH – Push Index High onto Stack

Example
LDA $55 ; A = $55
INCA ; A = $56

CPU08 6

Immediate Addressing
Operand immediately follows the opcode
Operand sizes are 1 or 2 bytes long
– ADD – Add immediate value to Accumulator
– AIX – Add immediate to Index register (H:X)

Example
CLRH ; H = 0
CLRX ; X = 0
AIX #$1FF ; H = $01

; X = $FF (H:X = $1FF)

Direct Addressing

Direct Addressing is limited to operands in the
$0000 - $00FF area of memory (page 0)
Operands are the low byte of the memory
address, the high byte is assumed to be $00
Fast execution – one clock cycle
Important since most RAM is originated at
$0000
Examples are
– Arithmetic Shifts (ASL, ASR, etc.)
– Loads and stores (LDA, STA, etc.)

Extended Addressing
Used to access any address in a 64K boundary
Any address above direct or zero page requires
this instruction
Example

org $E000
db $55
…

Start: LDA $E000 ; A = $55

CPU08 7

Indexed Addressing
Have 1, 2, or 3 operands for no offset, 8-bit, or 16-
bit offset
Indexed addressing is of great value as
Instructions can seamlessly move a pointer
through a table
Incrementing the pointer is done automatically
through post-increment
Using 8 or 16-bit offset, we can easily access any
element in an array

Indexed Addressing Example

The following example shows the three
different modes of index addressing

LDA ,x ; no offset
; load value pointed to by HX

LDA $FF,x ; 8-bit offset
; load value pointed to by
; HX + $FF

LDA $1000,x ; 16-bit offset
; load value pointed to by
; HX + $1000

Stack Pointer Addressing

Indexing off of the Stack Pointer is done
much the same way as Indexed
Addressing
If interrupts are off, this mode allows the
Stack Pointer to be used as a second
index register

CPU08 8

Relative Addressing
Relative addressing is done relative to the current
value of the Program Counter (PC)
The CPU automatically adds a signed offset (-128
to 127) to the PC
The offset gives the relative address starting from
the address location following the current branch
instruction
Only conditional branch instructions use this
addressing mode

Memory to Memory Addressing
Memory to Memory is expensive
– Is a three-byte, four cycle operation

But is less expensive than having to save
the contents of the accumulator
Moving Memory with Accumulator takes 9
cycles:

PSHA ; (2 cy) save contents of A
LDA #$55 ; (2 cy) load A with data
STA $10 ; (3 cy) save A into memory
PULA ; (2 cy) restore A

Moving Memory with MOV takes 4 cycles:
MOV #$55, $10 ; (4 cy)

Memory to Memory cont.

Moving memory using Direct to Direct
mode also saves time
– 10 cycles for doing so with accumulator
– 5 cycles for doing so using MOV

This is a valuable addressing mode
because the contents of the accumulator
are not changed
Savings can be substantial with a lot of
data movement

CPU08 9

A Note on Assemblers

The programmer generally does not need
to keep in mind which mode of Index,
Relative, or SP addressing mode to use
For instance, the assembler can
automatically select no offset, 8-bit, or
16-bit Index addressing mode
The assembler can also calculate offsets
for Relative Addressing mode, and verify
that they are within range

Resets and Interrupts
CPU is designed in a way as to execute instructions
sequentially
However, external events such as interrupts and resets
are asynchronous to program execution and require
special handling by the CPU
Reset is the mechanism by which we force (initialize)
the CPU into a known state. This includes loading the
Program Counter (PC) from a pre-defined non-volatile
memory location to start execution from a known state
Interrupts temporarily suspend normal program
execution and cause the CPU to switch context to
service the interrupt
The CPU08 has up to 128 different interrupt sources

Resets and Interrupts
Interrupts come in two flavors,
maskable and non-maskable.
The only non-maskable
“interrupt” on the CPU08 is reset
Interrupts on the CPU08 are
prioritized according to a
hardware defined priority scheme
Once reset occurs, the 16-bit
reset vector is fetched from
$FFFE, and the stack pointer is
set to $00FF
Some reset sources are the
RESET# pin, COP watchdog
timer, Illegal opcode, and Low
Voltage Inhibit (LVI)

CPU08 10

Interrupt Handling
Interrupt Processing is
comprised of 5 steps:

• Recognition – Interrupt
source must be unmask

• Arbitration – Interrupt priority
is evaluated, arbitrate
between pending INTs, etc.

• Stacking – Saving the current
state of the processor onto
the stack

• Execution – Fetching the
interrupt vector & handling it

• Returning – Restoring the
state of the processor

CPU08 11

CPU08 12

Selecting a Microcontroller

CPU08 13

CPU08 14

Package & Product Numbering

Portions of this power point presentation may have been taken from relevant users and technical manuals. Original content Copyright © 2005 – Babak Kia

